Authentication codes from generalized quadrangles

نویسندگان

  • Jeroen Schillewaert
  • Koen Thas
چکیده

Authentication codes were introduced by Simmons in [3]. Many combinatorial structures can be used to construct authentication codes, and interesting combinatorial bounds can be obtained, see e.g. [7], [8] and [9]. We investigate authentication codes arising from generalized quadrangles (GQs), which was first done in [1]. The use of intricated techniques and constructions from the theory of GQs allows us to obtain several systems of authentication codes, each with their own advantages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Quadrangles with an Abelian Singer Group

In this note we characterize thick finite generalized quadrangles constructed from a generalized hyperoval as those admitting an abelian Singer group, i.e., an abelian group acting regularly on the points.

متن کامل

Hemisystems of small flock generalized quadrangles

In this paper, we describe a complete computer classification of the hemisystems in the two known flock generalized quadrangles of order (5, 5) and give numerous further examples of hemisystems in all the known flock generalized quadrangles of order (s, s) for s 6 11. By analysing the computational data, we identify two possible new infinite families of hemisystems in the classical generalized ...

متن کامل

The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t)

In the paper [8], we introduced the notions of pseudo-hyperplane and pseudoembedding of a point-line geometry and proved that every generalized quadrangle of order (s, t), 2 ≤ s <∞, has faithful pseudo-embeddings. The present paper focuses on generalized quadrangles of order (3, t). Using the computer algebra system GAP [12] and invoking some theoretical relationships between pseudo-hyperplanes...

متن کامل

Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles

We find lower bounds on the minimum distance and characterize codewords of small weight in low-density parity check codes defined by (dual) classical generalized quadrangles. We analyze the geometry of the non-singular parabolic quadric in PG(4, q) to find information about the low-density parity check codes defined by Q(4, q), W(q) and H(3, q). ForW(q) and H(3, q), we are able to describe smal...

متن کامل

A geometric proof of a theorem on antiregularity of generalized quadrangles

A geometric proof is given in terms of Laguerre geometry of the theorem of Bagchi, Brouwer and Wilbrink, which states that if a generalized quadrangle of order s > 1 has an antiregular point then all of its points are antiregular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007